Mischkristallbildung und Metallverteilung im System MgO-AO- V_2O_5 (A = Ni, Zn, Cu)

M. Soll, R. Vogt und Hk. Müller-Buschbaum Kiel, Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstraße 40–60, W–2300 Kiel (F.R.G.)

(Eingegangen am 24. Februar 1991)

Zusammenfassung

Einkristalle von MgNi₂V₂O₈ (I), Mg₂NiV₂O₈ (II), Mg_{2,25}Zn_{0,75}V₂O₈ (III), Mg_{1,29}Zn_{1,71}V₂O₈ (IV) und Mg₂CuV₂O₈ (V) wurden durch Feststoffreaktionen dicht unterhalb des Schmelzpunktes der Reaktionsmischung erhalten und röntgenographisch untersucht. Alle Stoffe kristallisieren in der orthorhombischen Raumgruppe D_{2h}^{2h} -Cmca, Nr. 64. Die Gitterkonstanten liegen im Bereich von a = 5,98-6,11 Å; b = 11,40-11,50 Å; c = 8,26-8,31 Å; Z = 4. Die Besetzung von zwei Punktlagen durch M²⁺-Ionen erfolgt auf unterschiedliche Weise statistisch.

Abstract

Single crystals of MgNi₂V₂O₈ (I), Mg₂NiV₂O₈ (II), Mg_{2.25}Zn_{0.75}V₂O₈ (III), Mg_{1.29}Zn_{1.71}V₂O₈ (IV) and Mg₂CuV₂O₈ (V) were prepared by solid state reactions just below the melting points of the reaction mixtures and were then investigated by X-ray techniques. All of the compounds crystallize with orthorhombic symmetry, space group $D_{2\pi}^{18}$ -Cmca, no. 64. The lattice constants vary in the ranges a = 5.98-6.11 Å; b = 11.40-11.50 Å; c = 8.26-8.31 Å; Z = 4. The occupancy of two lattice sites by M²⁺ ions varies in a statistical manner.

1. Einleitung

Verbindungen des Typs $M_3V_2O_8$ mit $M^{2+} \equiv Mg^{2+}$ [1], Ni²⁺ [2, 3] und Zn^{2+} [4] sind seit längerer Zeit bekannt. Einkristalluntersuchungen gemischter Oxovanadate der allgemeinen Zusammensetzung $M_{3-x}Mg_xV_2O_8$ wurden bisher nicht publiziert, wobei A für die oben aufgeführten Metallionen steht. Interessant ist neben der Frage eines möglichen Strukturwechsels vor allem die Verteilung der zweiwertigen Metallionen auf die beiden kristallographischen Punktlagen. Beide sind oktaedrisch durch O^{2-} -Ionen koordiniert. Eines der Oktaeder im $M_3V_2O_8$ -Typ zeigt eine signifikante Stauchung. Diese kann für die Besetzung mit Haupt- und Nebengruppenmetallen von Bedeutung sein. So wurde mit einer umfangreichen Arbeit [5] mit Hilfe von Extended-Hückel-Rechnungen und einem angular overlap model nachgewiesen, daß eine

(2S+4L)-Konfiguration (2 Short, 4 Long) zum beispiel für Ni²⁺ in Verbindungen des Typs BaNiLn₂O₅ einen Energiegewinn zur Folge hat.

2. Darstellung von Einkristallen von $MgNi_2V_2O_8$ (I), $Mg_2NiV_2O_8$ (II), $Mg_{2,25}Zn_{0,75}V_2O_8$ (III), $Mg_{1,29}Zn_{1,71}V_2O_8$ (IV) und $Mg_2CuV_2O_8$ (V)

Die Stoffe I-V sind durch Feststoffreaktionen zu erhalten. Die Ausgangskomponenten

 $\begin{array}{l} I \ MgCO_3 : \ NiO : \ V_2O_5 = 1:2:1 \\ II \ NiO : \ MgCO_3 : \ V_2O_5 = 1:2:1 \\ III \ ZnO : \ MgCO_3 : \ V_2O_5 = 1:2:1 \\ IV \ MgCO_3 : \ ZnO : \ V_2O_5 = 1:2:1 \end{array}$

 $V CuO : Mg(OH)_2 : V_2O_5 = 1:2:1$

wurden innig vermengt und für I–IV zu Tabletten verpreßt, während V als lockeres Pulver zur Reaktion gebracht wurde. Innerhalb von zwei bis fünf Tagen reagierten die Präparate dicht unterhalb des jeweiligen Schmelzpunktes bei Temperaturen zwischen 950 und 1050 °C (I–IV) bzw. 810 °C (V) vollständig durch. Der Fortgang der Reaktion wurde durch Pulverdiffraktometermessungen kontrolliert. Aus den stark gesinterten Präparaten konnten unter dem Lichtmikroskop bernsteinfarbene (I und II), farblose (III und IV) bzw. schwarze (V) Einkristalle isoliert werden. Die energiedispersive Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) zeigte in allen Fällen die Anwesenheit der eingesetzten Elemente. Die unterschiedliche Verteilung der M^{2+} -Ionen wurde durch Verfeinerung der Besetzungsfaktoren bestimmt.

3. Röntgenographische Untersuchung von Einkristallen von MgNi₂V₂O₈ (I), Mg₂NiV₂O₈ (II), Mg_{2,25}Zn_{0,75}V₂O₈ (III), Mg_{1,29}Zn_{1,71}V₂O₈ (IV) und Mg₂CuV₂O₈ (V)

Mit Weißenberg- und Precessionaufnahmen sowie Vierkreisdiffraktometermessungen wurden die kristallographischen Daten bestimmt. Tabelle 1 stellt diese mit den Meßbedingungen zusammen. Parameterverfeinerungen erfolgten mit dem Programm SHELX-76 [6]. Tabelle 2 gibt die Parameter bei isotroper Verfeinerung der Temperaturfaktoren wieder. In Tabelle 3 sind die wichtigsten Metall-Sauerstoff-Abstände aufgeführt.

4. Die Kristallstruktur des $M_3V_2O_8\text{-}Typs$ mit Diskussion der Phasen $Mg_{3-{\it x}}A_{\it x}V_2O_8$

Die neu dargestellten Stoffe I–V gehören zum $M_3V_2O_8$ -Typ der bisher für M = Co [2, 3], Ni [2, 3], Mg [1] und Zn [4] an Einkristallen untersucht wurde. Das fünfwertige Vanadium auf der Lage (8f) ist tetraedrisch durch Sauerstoff koordiniert. In Abb. 1 sind die VO₄-Tetraeder eingezeichnet, die

	I	II	III	IV	Λ
Raumgruppe	$D_{2n}^{18}-CmCa$ (Nr.64)				
Kristallgestalt	$0,09 \times 0,12 \times 0,20$				
Gitterkonstanten (Å)					
a	5,976(2)	6,009(5)	6,087(3)	6,156(6)	6,088(5)
<i>b</i> с	11,399(2) $8,267(4)$	11,419(3) $8,293(8)$	11,495(3) $8,293(3)$	11,495(3) $8,313(2)$	11,421(11) 8,263(3)
Zellvolumen ($Å^3$)	553,56	569,03	578,33	583,48	574,67
Formeleinheiten/EZ	4	4	4	4	4
Auslöschungen	hkl: h+k=2n $0kl: k=2n$	h0l: h, l=2n hk0: h, k=2n	h00: h = 2n 0 $k0: k = 2n$	00l: l = 2n	00l: l=2n
Symmetrieunabhängige reflexe	525	605	517	411	564
Gütefaktor	0,036	0,042	0,042	0,077	0,067
Diffraktometer	Philips PW1100 m	lodifiziert d. STOE		4-Kreis, Sicmens AED2	
Strahlung/Monochromator	Mo Kā/Graphit				
20-Bereich	5-70°				
Me&modus	Background-peak-	background			
Time/step	1–3 s				
Korrekturen	Polarisations- und	Lorentzfaktor, Untergrui	nd/empirische Absorptie	on, Programm EMPIR	[16]

TABELLE 1

63

TABELLE 2

	Lage	x	y	z	$B(Å^2)$
I					
$(\frac{1}{3}Mg + \frac{2}{3}Ni)1$	(4a)	0,000	0,000	0,000	0,65(2)
(1 Mg+ 1 Ni)2	(8e)	0,250	0,1311(1)	0,250	0,51(2)
v	(8f)	0,000	0,3772(1)	0,1200(1)	0,54(2)
01	(8f)	0,000	0,250(1)	0,229(1)	0,79(6)
02	(8f)	0,000	0,002(1)	0,246(1)	0,71(6)
03	(16g)	0,271(1)	0,118(1)	0,999(1)	0,90(4)
II					
$(\frac{1}{3}Ni + \frac{2}{3}Mg)1$	(4a)	0,000	0,000	0,000	0,57(3)
(3 Ni+3Mg)2	(8e)	0,250	0,1321(1)	0,250	0,36(2)
v	(8f)	0,000	0,3784(1)	0,1208(1)	0,47(2)
01	(8f)	0,000	0,251(1)	0,229(1)	0,71(7)
02	(8f)	0,000	0,003(1)	0,244(1)	0,54(6)
03	(16g)	0,271(1)	0,119(1)	0,999(1)	0,82(5)
III					
$(\frac{1}{3}Zn + \frac{2}{3}Mg)$	(4a)	0,000	0,000	0,000	0,81(3)
(0,21Zn + 0,79Mg)2	(8e)	0,250	0,1360(1)	0,250	0,65(2)
v	(8f)	0,000	0,3793(1)	0,1218(1)	0,62(2)
01	(8f)	0,000	0,251(1)	0,227(1)	0,86(5)
02	(8f)	0,000	0,003(1)	0,244(1)	0,86(5)
03	(16g)	0,274(1)	0,118(1)	0,997(1)	1,06(5)
IV					
$(\frac{1}{3}Mg + \frac{2}{3}Zn)$	(4a)	0,000	0,000	0,000	0,74(7)
(0,53Zn + 0,47Mg)2	(8e)	0,000	0,1364(4)	0,250	0,56(6)
V	(8f)	0,000	0,3790(3)	0,1225(5)	0,54(6)
01	(8f)	0,000	0,251(2)	0,229(2)	0,79(24)
02	(8f)	0,000	0,003(2)	0,245(2)	0,71(23)
03	(16g)	0,279(2)	0,117(1)	0,997(2)	0,96(17)
v					
$(\frac{1}{2}Cu + \frac{1}{2}Mg)$	(4a)	0,000	0,000	0,000	1,09(10)
$(\frac{1}{4}Cu + \frac{3}{4}Mg)^2$	(8e)	0,250	0,1346(3)	0,250	1,43(10)
V	(8f)	0,000	0,3791(3)	0,1239(8)	0,43(4)
01	(8f)	0,000	0,250(1)	0,231(2)	0,62(21)
02	(8f)	0,000	0,005(1)	0,241(2)	0,73(23)
03	(16g)	0,245(2)	0,118(1)	0,994(1)	0,75(15)

Atomparameter^{*} für MgNi₂V₂O₈ (I), NiMg₂V₂O₈ (II), Zn_{0,75}Mg_{2,25}V₂O₈ (III), Mg_{1,29}Zn_{1,71}V₂O₈ (IV) und CuMg₂V₂O₈ (V): in der Raumgruppe D_{2h}^{18} -Cmca sind folgende Punktlagen besetzt

*Standardabweichungen in Klammern.

voneinander isoliert sind und gegenüber der a-b-Ebene geneigte Schichten ausbilden. In allen untersuchten Substanzen schwanken die V-O-Abstände zwischen 1,67 und 1,83 Å.

Die zweiwertigen Metallionen zeigen eine oktaedrische Sauerstoffumgebung. Die Anordnung der Polyeder im Bereich einer Elementarzelle ist in Abb. 2 wiedergegeben. Die Punktlage (8e) bildet entlang [100] kantenverknüpfte Oktaederketten (schraffiert). Metallionen auf der Lage (4a) (nicht

TABELLE 3

I					
(Mg+Ni)1–O2	2,032(5)	(2×)	V-03	1,686(3)	(2×)
(Mg+Ni)1-O3	2,106(3)	(4×)	V01	1,710(5)	
(Mg + Ni)2-O1	2,023(3)	(2×)	V– O2	1,801(5)	
(Mg+Ni)2–O2	2,100(3)	(2×)			
(Mg+Ni)2–O3	2,085(4)	(2×)			
II					
(Ni + Mg)1 - O2	2,027(6)	(2×)	V-03	1,697(4)	(2×)
(Ni + Mg)1 - O3	2,116(4)	(4×)	V-01	1,712(4)	
(Ni + Mg)2 - O1	2,029(4)	(2×)	V–O2	1,806(4)	
(Ni + Mg)2 - O2	2,109(4)	(2×)			
(Ni+Mg)2–O3	2,095(4)	(2×)			
III					
(Zn + Mg)1 - O2	2,028(6)	(2×)	V-03	1,692(5)	(2×)
(Zn + Mg)1 - O3	2,143(4)	$(4 \times)$	V-01	1,800(6)	
(Zn + Mg)2O1	2,022(4)	(2×)	V–O2	1,707(5)	
(Zn + Mg)2 - O2	2,154(4)	(2×)			
(Zn+Mg)2–O3	2,117(5)	$(2 \times)$			
IV					
(Mg + Zn)1 - O2	2,036(17)	(2×)	V-03	1,674(14)	(2×)
(Mg + Zn)1 - O3	2,170(13)	$(4 \times)$	V-01	1,714(20)	
(Mg+Zn)201	2,025(13)	(2×)	V-02	1,799(20)	
(Mg+Zn)2-O2	2,167(15)	(2×)			
(Mg + Zn)2 - O3	2,126(14)	(2×)			
v					
(Mg+Cu)1-O2	1,991(19)	(2×)	V03	1,682(12)	(2×)
(Mg + Cu)1 - O3	2,149(10)	(4×)	V01	1,720(15)	
(Mg+Cu)2-O1	2,017(10)	(2×)	V–O 2	1,825(18)	
(Mg+Cu)2–O2	2,121(12)	(2×)			
(Mg + Cu)2 - O3	2,128(14)	(2×)			

Interatomare Abstände (Å)^{*} für $MgNi_2V_2O_8$ (I), $NiMg_2V_2O_8$ (II), $Zn_{0,75}Mg_{2,25}V_2O_8$ (III), $Mg_{1,29}Zn_{1,71}V_2O_8$ (IV) und $CuMg_2V_2O_8$ (V)

^aStandardabweichungen in Klammern.

schraffiert) treten zueinander isoliert auf. Parallel zu (101) sind die MO_6 -Oktaeder über Kanten zu gewellten Schichten verknüpft. Diese Zickzack-Schichten sind durch VO_4 -Tetraeder zu einem dreidimensionalen Netz verknüpft. Auf diese Weise entstehen in Richtung [100] offene Kanäle, die in Abb. 3 zu erkennen sind.

Die zweiwertigen Ionen zeigen aufgrund ihrer nahezu identischen Radien $(Mg^{2+}, 0.72 \text{ Å}; Zn^{2+}, 0.74 \text{ Å}; Ni^{2+}, 0.69 \text{ Å}; Cu^{2+}, 0.73 \text{ Å} [7])$ erfahrungsgemäß kristallchemische Ähnlichkeiten. Es war zu erwarten, daß unter den gewählten Präparationsbedingungen eine statistische Verteilung auf den Punktlagen (8e) und (4a) vorliegt. Eine solche wurde bereits an folgenden Beispielen beobachtet: Ni_{1,16}Mg_{0,84}SiO₄ – natürlicher Olivin [8], Mg₂Ni₂Ta₂O₉ [9], Zn₂MgP₂O₈ [10], Zn_{2,1}Mg_{0,9}Ta₂O₈ [11], Mg_{0,78}Cu_{0,22}O [12] und Mg_{0,67}Cu_{1,33}V₂O₇ [13].

Abb. 1. Wiedergabe der isolierten VO_4 -Tetraeder im Bereich einer Elementarzelle. Leere Kugel, O^{2-} .

Abb. 2. Perspektivische Darstellung der Verküpfung der Koordinationspolyeder um die zweiwertigen Metalle. Die Elementarzellabmessungen sind eingezeichnet; schraffiert, Polyeder der Lage (4a); nicht schraffiert, Polyeder der Lage (8e); leere Kugel, O^{2^-} .

Die Röntgenstrukturanalysen zeigen für die Verbindungen $MgNi_2V_2O_8$ (I) und $Mg_2NiV_2O_8$ (II) erwartungsgemäß eine statistische Verteilung von Mg^{2+} und Ni^{2+} gemäß den Einwaagen der Ausgangsstoffe und Bruttoformeln auf beiden Punktlagen im Verhältnis 1:2 (I) bzw. 2:1 (II). Um so mehr überraschte eine uneinheitliche Besetzung der entsprechenden Punktlagen in den Phasen $Mg_{2,25}Zn_{0,75}V_2O_8$ (III) und $Mg_{1,29}Zn_{1,71}V_2O_8$ (IV). Während die Metallverteilung auf der Punktlage (4a) entsprechend der Einwaage Mg:Zn=2:1 (III) bzw.

Abb. 3. Verknüpfung von VO₄-Tetraedern mit $M^{2+}O_6$ -Oktaedern. Enge Schraffur, Polyeder um V^{5+} ; mittlere Schraffur, Polyeder um Lage (4a); weite Schraffur, Polyeder um Lage (8e).

1:2 (IV) beträgt, wich die Besetzung der Lage (8e) deutlich davon ab (vergl. Tabelle 2). Die Verfeinerung der Besetzungsfaktoren ergab, daß Mg^{2+} in beiden Phasen gegenüber der Lage (4a) auf der Lage (8e) um den Faktor 1,8 angereichert wurde. Interessant ist auch die Beobachtung, daß in der Verbindung $Mg_2CuV_2O_8$ (V) beide Punktlagen eine von der Einwaage Mg:Cu=2:1 abweichende Besetzung aufweisen. Während auf der Lage (8e) ebenfalls eine Anreicherung von Mg^{2+} nachzuweisen war, erfolgte auf der Lage (4a) eine Verarmung. Diese gegenläufigen Effekte gleichen sich gut aus, so daß die Summenformel der Einwaage entspricht.

Abschließend kann festgestellt werden, daß der in der Einleitung erwähnte Energiegewinn für Ni²⁺ durch bevorzugte Besetzung eines gestauchten Oktaeders hier nicht erkennbar ist. Nach dieser Theorie sollte für die Verbindungen MgNi₂V₂O₈ (I) und Mg₂NiV₂O₈ (II) Punktlage (4a) überwiegend oder ausschließlich mit Ni²⁺ besetzt sein, was nicht beobachtet wurde.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Alle Rechnungen wurden auf der elektronischen Rechenanlage CRVAX8550 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Programm [14, 15] erstellt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Zusammenarbeit mbH., D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55237, des Autors und Zeitschriftenzitats angefordert werden.

Literatur

68

- 1 N. Krishnamachari und C. Calvo, Can. J. Chem., 49 (1971) 1629.
- 2 E. E. Sauerbrei, R. Faggiani und C. Calvo, Acta Crystallogr., Sect. B, 29 (1973) 2304.
- 3 H. Fuess, E. F. Bertaut, R. Pauthenet und A. Durif, Acta Crystallogr., Sect. B, 26 (1970) 2036.
- 4 R. Gopal und C. Calvo, Can. J. Chem., 49 (1971) 3056.
- 5 J. K. Burdett und J. F. Mitchell, J. Solid State Chem., im Druck.
- 6 G. M. Sheldrick, SHELX-76 Program for Crystal Structure Determination, Cambridge, 1976.
- 7 R. D. Shannon, Acta Crystallogr., Sect. A, 32 (1976) 751.
- 8 D. L. Bich, Am. Mineral., 66 (1981) 770.
- 9 G. Halle und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 562 (1988) 87.
- 10 A. G. Nord, Mater. Res. Bull., 12 (1974) 563.
- 11 G. Halle und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 564 (1988) 31.
- 12 N. G. Schmall, J. Barthal und G. F. Eikerling, Z. Anorg. Allg. Chem., 332 (1964) 230.
- 13 R. Vogt und Hk. Müller-Buschbaum, J. Less-Common Met., 170 (1991) 309.
- 14 C. K. Johnson, Rep. ORNL-3794, 1965 (Oak Ridge National Laboratory, TN).
- 15 K.-B. Plötz, Dissertation, Universität Kiel, 1982.